ISILC - Logic Conference Proceedings of the International Summer Institute and Logic Colloquium, Kiel 1974

Éditeur
Springer Berlin Heidelberg
Format
Livre Broché
Langue
Français
Parution
12 - 1975
Nombre de pages
664
EAN
9783540075349
Dimensions
155 × 235 × 35 mm
CHF 69.00
1 à 2 semaines
Ajouter au panier Ajouter à ma liste

Résumé du livre

Klappentext An observation on the product of Silver's forcing.- Recursively unsolvable algorithmic problems and related questions reexamined.- Lectures on large cardinal axioms.- Indescribability properties and small large cardinals.- Marginalia to a theorem of Silver.- Computation theories: An axiomatic approach to recursion on general structures.- Closed models and hulls of theories.- Axioms of choice in Morse-Kelley class theory.- First-order logic and its extensions.- Set theory in infinitary languages.- Sur la m¿ode en histoire de la logioue.- The model theory of local fields.- Quantifier elimination.- Intensional semantics for natural language.- On extendability of models of ZF set theory to the models of Kelley-Morse theory of classes.- Many-valued algorithmic logic.- The least ? 2 1 and ? 2 1 reflecting ordinals.- Data types as lattices. Inhaltsverzeichnis An observation on the product of Silver's forcing.- Recursively unsolvable algorithmic problems and related questions reexamined.- Lectures on large cardinal axioms.- Indescribability properties and small large cardinals.- Marginalia to a theorem of Silver.- Computation theories: An axiomatic approach to recursion on general structures.- Closed models and hulls of theories.- Axioms of choice in Morse-Kelley class theory.- First-order logic and its extensions.- Set theory in infinitary languages.- Sur la méthode en histoire de la logioue.- The model theory of local fields.- Quantifier elimination.- Intensional semantics for natural language.- On extendability of models of ZF set theory to the models of Kelley-Morse theory of classes.- Many-valued algorithmic logic.- The least ? 2 1 and ? 2 1 reflecting ordinals.- Data types as lattices.